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We conjecture a formula for the symmetric function [n−k]t
[n]t

∆hm∆en−kω(pn) in terms of decorated partially labelled

square paths. This can be seen as a generalization of the square conjecture of Loehr and Warrington [23], recently

proved by Sergel [28] after the breakthrough of Carlsson and Mellit [4]. Moreover, it extends to the square case the

combinatorics of the generalized Delta conjecture of Haglund, Remmel and Wilson [17], answering one of their

questions. We support our conjecture by proving the specialization m = q = 0, reducing it to the same case of the Delta

conjecture, and the Schröder case, i.e. the case 〈·, en−dhd〉. The latter provides a broad generalization of the q, t-square

theorem of Can and Loehr [3]. We give also a combinatorial involution, which allows to establish a linear relation

among our conjectures (as well as the generalized Delta conjectures) with fixed m and n. Finally, in the appendix, we

give a new proof of the Delta conjecture at q = 0.

1 Introduction

In [17], Haglund, Remmel and Wilson conjectured a combinatorial formula for ∆′
en−k−1

en in terms of decorated
labelled Dyck paths, which they called the Delta conjecture, after the so called Delta operators ∆′

f introduced
by Bergeron, Garsia, Haiman, and Tesler [2] for any symmetric function f . In fact in the same article [17] the
authors conjectured a combinatorial formula for the more general ∆hm∆′

en−k−1
en in terms of decorated partially

labelled Dyck paths, which we call the generalized Delta conjecture.
These problems have attracted considerable attention since their formulation: a partial list of works about

the Delta conjecture is [17, 7, 5, 20, 8, 25, 30, 26, 27, 31]. The main result about the generalized Delta conjecture
is the proof of the Schröder case, i.e. the case 〈·, en−dhd〉, in [6].

The special case k = 0 of the Delta conjecture, that has been known as the Shuffle conjecture [15], was
recently proved by Carlsson and Mellit [4]. The latter turns out to be a combinatorial formula for the Frobenius
characteristic of the Sn-module of diagonal harmonics studied by Garsia and Haiman in relation to the famous
n! conjecture [12], now n! theorem of Haiman [21].

In [23] Loehr and Warrington conjectured a combinatorial formula for ∆enω(pn) = ∇ω(pn) in terms of
labelled square paths (ending east), called the square conjecture. The special case 〈·, en〉 of this conjecture,
known as the q, t-square conjecture, has been proved earlier by Can and Loehr in [3]. Recently the full square
conjecture has been proved by Sergel in [28] after the breakthrough of Carlsson and Mellit in [4].

In the present work we conjecture a combinatorial formula for [n−k]t
[n]t

∆hm∆en−k
ω(pn) in terms of decorated

partially labelled square paths that we call the generalized Delta square conjecture. In analogy with the Delta
conjecture in [17], we call simply the Delta square conjecture the special case m = 0. Our conjecture extends the
square conjecture of Loehr and Warrington [23] (now a theorem [28]), i.e. it reduces to that one for m = k = 0.
Moreover, it extends the generalized Delta conjecture in the sense that on decorated partially labelled Dyck
paths it gives the same combinatorial statistics. Notice that our conjecture answers a question in [17].

In the present work we support our conjecture by proving some of its consequences. In particular, we prove
the Delta square conjecture (i.e. the case m = 0) at q = 0: this turns out to reduce to the specialization q = 0
of the Delta conjecture, already proved in [8]. In fact, in the Appendix we provide a new proof of this result.
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Also, we prove the Schröder case, i.e. the case 〈·, en−dhd〉, of the generalized Delta square conjecture: this is the
analogue of the same result for the generalized Delta conjecture proved in [6]. Finally, we provide a combinatorial
involution among the objects of the generalized Delta (square) conjectures for fixed m and n. Together with its
symmetric function counterpart and the specialization q = 0 of the generalized Delta conjecture at k = 0, this
will prove a curious linear relation among such conjectures.

The paper is organized as follows. In Section 2 we recall the generalized Delta conjecture of [17] by giving
the definitions and fixing the notation. In Section 3 we state our generalized Delta conjecture, and we make a
few basic remarks. In Section 4 we fix the notation on symmetric functions and we prove the identities needed
in the rest of the paper. In Section 5 we prove the Delta square conjecture (i.e. the case m = 0) at q = 0, by
reducing it to the Delta conjecture at q = 0. We will give a new proof of the latter in the Appendix: this in
order to make our treatment more self-contained, but also because the new proof might have some independent
interest. In Section 6 we prove the generalized Delta conjecture of [17] at k = 0 and t = 0. In Section 7 we prove
the Schröder case, i.e. the case 〈·, en−dhd〉 of our generalized Delta square conjecture. This is the analogue of the
same result for the generalized Delta conjecture proved in [6], and it is a broad generalization of the q, t-square
theorem proved in [3]. In Section 8 we give a combinatorial involution that will provide a counterpart of two
theorems on symmetric functions proved in Section 5. With this we will prove a curious linear relation among
the Delta (square) conjectures for fixed m and n. Finally in Section 9 we mention some open problems.

2 The generalized Delta conjecture

We refer to Section 4 for notations and definitions concerning symmetric functions.

In [17], the authors conjectured a combinatorial interpretation for the symmetric function

∆hm∆′
en−k−1

en

in terms of partially labelled decorated Dyck paths, known as the generalized Delta conjecture because it reduces
to the Delta conjecture when m = 0. We give the necessary definitions.

Definition 2.1. A Dyck path of size n is a lattice path going from (0, 0) to (n, n), using only north and east
unit steps and staying weakly above the line x = y (also called the main diagonal). The set of Dyck paths of
size n will be denoted by D(n). A partially labelled Dyck path is a Dyck path whose vertical steps are labelled
with (not necessarily distinct) non-negative integers such that the labels appearing in each column are strictly
increasing from bottom to top, and 0 does not appear in the first column. The set of partially labelled Dyck
paths with m zero labels and n nonzero labels is denoted by PLD(m,n).

Partially labelled Dyck paths differ from labelled Dyck paths only in that 0 is allowed as a label in the
former and not in the latter.

Definition 2.2. We define for each D ∈ PLD(m,n) a monomial in the variables x1, x2, . . . : we set

xD :=

m+n󰁜

i=1

xli(D)

where li(D) is the label of the i-th vertical step of D (the first being at the bottom), and x0 := 1. The word
partially is explained by the fact that the zero labels do not contribute.

Definition 2.3. Let D be a (partially labelled) Dyck path of size n+m. We define its area word to be the list
of integers a(D) = (a1(D), a2(D), · · · , an+m(D)) where ai(D) is the number of whole squares in the i-th row
(counting from the bottom) between the path and the main diagonal.

Definition 2.4. The rises of a Dyck path D are the indices

Rise(D) := {2 ≤ i ≤ n+m | ai(D) > ai−1(D)},

or the vertical steps that are directly preceded by another vertical step. Taking a subset DRise(D) ⊆ Rise(D)
and decorating the corresponding vertical steps with a ∗, we obtain a decorated Dyck path, and we will refer to
these vertical steps as decorated rises.

Definition 2.5. Given a partially labelled Dyck path, a zero valley is a vertical step with label 0 (which is
necessarily preceded by a horizontal step, which is why we call it a valley).
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Fig. 1. Example of an element in PLD(2, 6)∗2.

The set of partially labelled decorated Dyck paths with m zero labels, n nonzero labels and k decorated
rises is denoted by PLD(m,n)∗k. See Figure 1 for an example.

We define two statistics on this set.

Definition 2.6. We define the area of a (partially labelled) decorated Dyck path D as

area(D) :=
󰁛

i ∕∈DRise(D)

ai(D).

For a more visual definition, the area is the number of whole squares that lie between the path and the
main diagonal, except for the ones in the rows containing a decorated rise. For example, the decorated Dyck
path in Figure 1 has area 7.

Notice that the area does not depend on the labels.

Definition 2.7. Let D ∈ PLD(m,n)∗k. For 1 ≤ i < j ≤ n+m, we say that the pair (i, j) is a diagonal inversion
if

• either ai(D) = aj(D) and li(D) < lj(D) (primary diagonal inversion),

• or ai(D) = aj(D) + 1 and li(D) > lj(D) (secondary diagonal inversion),

where li(D) denotes the label of the vertical step in the i-th row.
Then we define

dinv(D) := #{0 ≤ i < j ≤ n+m | (i, j) is a diagonal inversion}.

For example, the decorated Dyck path in Figure 1 has 1 primary diagonal inversion (the pair (2, 4)) and 2
secondary diagonal inversions (the pairs (2, 3) and (5, 6)), so its dinv is 3.

Notice that the decorations on the rises do not affect the dinv.

Definition 2.8. We define a formal series in the variables x = (x1, x2, . . . ) and coefficients in N[q, t]

PLDx,q,t(m,n)∗k :=
󰁛

D∈PLD(m,n)∗k

qdinv(D)tarea(D)xD.

The following conjecture is stated in [17].

Conjecture 2.9 (Generalized Delta). For m,n, k ∈ N, m ≥ 0 and n > k ≥ 0,

∆hm∆′
en−k−1

en = PLDx,q,t(m,n)∗k.

Notice that PLDx,q,t(m,n)∗k is in fact a symmetric function (cf. Remark 3.14).
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3 The generalized Delta square conjecture

We refer to Section 4 for notations and definitions concerning symmetric functions.

Definition 3.1. A square path ending east of size n is a lattice path going from (0, 0) to (n, n) consisting of
east and north unit steps, always ending with an east step. The set of such paths is denoted by SQE(n). We call
base diagonal of a square path the diagonal y = x+ k with the smallest value of k that is touched by the path
(so that k ≤ 0). The shift of the square path is the non-negative value −k. The breaking point of the square
path is the lowest point in which the path touches the base diagonal (so for Dyck paths it is (0, 0)).

For example, the path in Figure 2 has shift 3.

Definition 3.2. A partially labelled square path ending east is a square path ending east whose vertical steps
are labelled with (not necessarily distinct) non-negative integers such that the labels appearing in each column
are strictly increasing bottom to top, there is at least one nonzero label labelling a vertical step starting from
the base diagonal, and if the path starts with a vertical step, this first step’s label is nonzero. The set of partially
labelled square paths ending east with m zero labels and n nonzero labels is denoted by PLSQE(m,n).

Definition 3.3. Let P be a (partially labelled) square path ending east of size n+m. We define its area word
to be the list of integers a(P ) = (a1(P ), a2(D), · · · , an+m(P )) where the i-th vertical step of the path starts from
the diagonal y = x+ ai(P ). For example the path in Figure 2 has area word (0,−3,−3,−2,−2,−1, 0, 0).

Definition 3.4. Let P be a partially labelled square path ending east. We define the monomial xP in the same
way as for partially labelled Dyck paths (see Definition 2.2).

Definition 3.5. The rises of a square path ending east P are defined in the same way as the rises of a Dyck
path (see Definition 2.4). Taking a subset DRise(P ) ⊆ Rise(P ) and decorating the corresponding vertical steps
with a ∗, we obtain a decorated square path, and we will refer to these vertical steps as decorated rises.

Definition 3.6. Given a partially labelled square path, a zero valley is a vertical step with label 0 (which is
necessarily preceded by a horizontal step, which is why we call it a valley).

The set of partially labelled decorated square paths ending east with m zero labels, n nonzero labels and k
decorated rises is denoted by PLSQE(m,n)∗k. See Figure 2 for an example.
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Fig. 2. Example of an element in PLSQE(2, 6)∗1

Remark 3.7. Observe that a partially labelled Dyck path is also a partially labelled square path, and indeed
PLD(m,n)∗k ⊆ PLSQE(m,n)∗k.

We define two statistics on this set that reduce to the same statistics as defined in [23] when m = k = 0.

Definition 3.8. Let P ∈ PLSQE(m,n)∗k and s be its shift. Define

area(P ) :=
󰁛

i ∕∈DRise(P )

(ai(P ) + s).

More visually, the area is the number of whole squares between the path and the base diagonal and not contained
in rows containing a decorated rise.
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For example, the path in Figure 2 has area 11.

Definition 3.9. Let P ∈ PLSQE(m,n). For 1 ≤ i < j ≤ n+m, we say that the pair (i, j) is a diagonal inversion
if

• either ai(P ) = aj(P ) and li(P ) < lj(P ) (primary diagonal inversion),

• or ai(P ) = aj(P ) + 1 and li(P ) > lj(P ) (secondary diagonal inversion),

where li(P ) denotes the label of the vertical step in the i-th row.
Then we define

dinv(P ) := #{0 ≤ i < j ≤ n+m | (i, j) is a diagonal inversion}
+#{0 ≤ i ≤ m+ n | ai(P ) < 0 and li(P ) ∕= 0}.

This second term is referred to as bonus dinv.

For example, the path in Figure 2 has dinv 6: 2 primary diagonal inversions, i.e. (1, 7) and (2, 3), 1 secondary
diagonal inversion, i.e. (1, 6), and 3 bonus dinv, coming from the rows 3, 4 and 6.

Remark 3.10. Observe on partially labelled Dyck paths all our statistics agree with the statistics of the
generalized Delta conjecture.

Definition 3.11. We define a formal series in the variables x = (x1, x2, . . . ) and coefficients in N[q, t]

PLSQE
x,q,t(m,n)∗k :=

󰁛

P∈PLSQE(m,n)∗k

qdinv(P )tarea(P )xP .

In analogy with the Delta conjecture, we will refer to the case m = 0 of the following conjecture simply as
the Delta square conjecture.

Conjecture 3.12 (Generalized Delta square). For m,n, k ∈ N, m ≥ 0 and n > k ≥ 0,

[n− k]t
[n]t

∆hm
∆en−k

ω(pn) = PLSQE
x,q,t(m,n)∗k.

Remark 3.13. This conjecture has been verified using MAPLE and PYTHON for small values of m,n, k, for
example for m = 0 and 1 ≤ k < n ≤ 5, but also for m ≤ 5 and 1 ≤ k < n ≤ 3; e.g. the case n = m = 4 and k = 3,
that has been also checked, produces 17500 paths with standard labels (i.e. the nonzero labels are 1, 2, 3 and
4).

Remark 3.14. Observe that PLSQE
x,q,t(m,n)∗k is a symmetric function. Indeed, consider the expression󰁓

P qdinv(P )tarea(P )xP where the sum is taken over all P ∈ PLSQE(m,n)∗k of a fixed shape, i.e. a fixed underlying

square path with prescribed zero valleys. From this sum we can factor tarea(P ), as the area is the same for all
such paths P , and qa(P ), where a(P ) is the contribution to the dinv of the 0 labels and of the negative letters of
the area word (the bonus dinv): indeed this contribution does not depend on the nonzero labels, but only on the
shape, so it will be the same for all our paths. What we are left with is in fact an LLT polynomial: the argument
is essentially the same as in [17, Section 6.2], so we omit it (cf also [19, Remark 6.5]). As it is well-known that
the LLT polynomials are symmetric functions (cf. [14, Appendix]), we deduce that also PLSQE

x,q,t(m,n)∗k is
symmetric.

This conjecture answers a question in [17, Section 8.2].

Remark 3.15. Notice that the case m = k = 0 of the generalized Delta square conjecture reduces precisely to
the square conjecture of Loehr and Warrington [23], recently proved by Sergel [28] after the breakthrough of
Carlsson and Mellit [4].

Example 3.16. Using (39) and (41) (see Section 4 for definitions and notations about symmetric functions),
it is easy to see that for m = 0 and k = n− 1 we get

[1]t
[n]t

∆h0∆e1ω(pn) = [n]qen. (1)

We leave to the reader the straightforward verification that indeed

PLSQE
x,q,t(0, n)

∗n−1 = [n]qen, (2)

proving in this way our conjecture at m = 0 and k = n− 1.
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4 Symmetric functions

For all the undefined notations and the unproven identities, we refer to [7, Section 1], where definitions, proofs
and/or references can be found. In the next subsection we will limit ourselves to introduce some notation, while
in the following one we will recall some identities that are going to be useful in the sequel. In the third and final
subsection we will prove the main results on symmetric functions of this work.

For more references on symmetric functions cf. also [24], [29] and [19].

4.1 Notation

We denote by Λ =
󰁏

n≥0 Λ
(n) the graded algebra of symmetric functions with coefficients in Q(q, t), where Λ(n)

denotes the vector space of symmetric functions homogeneous of degree n, and by 〈 , 〉 the Hall scalar product
on Λ, which can be defined by saying that the Schur functions form an orthonormal basis.

The standard bases of the symmetric functions that will appear in our calculations are the monomial {mλ}λ,
complete {hλ}λ, elementary {eλ}λ, power {pλ}λ and Schur {sλ}λ bases.

We will use implicitly the usual convention that e0 = h0 = 1 and ek = hk = 0 for k < 0.
For a partition µ ⊢ n, we denote by

󰁨Hµ := 󰁨Hµ[X] = 󰁨Hµ[X; q, t] =
󰁛

λ⊢n

󰁨Kλµ(q, t)sλ (3)

the (modified) Macdonald polynomials (introduced by Garsia and Haiman [10]), where

󰁨Kλµ := 󰁨Kλµ(q, t) = Kλµ(q, 1/t)t
n(µ) with n(µ) =

󰁛

i≥1

µi(i− 1) (4)

are the (modified) Kostka coefficients (see [19, Chapter 2] for more details).

The set { 󰁨Hµ[X; q, t]}µ is a basis of the ring of symmetric functions Λ. This is a modification of the basis
introduced by Macdonald [24].

If we identify the partition µ with its Ferrers diagram, i.e. with the collection of cells {(i, j) | 1 ≤ i ≤
µj , 1 ≤ j ≤ ℓ(µ)}, then for each cell c ∈ µ we refer to the arm, leg, co-arm and co-leg (denoted respectively as
aµ(c), lµ(c), aµ(c)

′, lµ(c)
′) as the number of cells in µ that are strictly to the right, above, to the left and below

c in µ, respectively.
We set M := (1− q)(1− t) and we define for every partition µ

Bµ := Bµ(q, t) =
󰁛

c∈µ

qa
′
µ(c)tl

′
µ(c) (5)

Tµ := Tµ(q, t) =
󰁜

c∈µ

qa
′
µ(c)tl

′
µ(c) (6)

Πµ := Πµ(q, t) =
󰁜

c∈µ/(1)

(1− qa
′
µ(c)tl

′
µ(c)) (7)

wµ := wµ(q, t) =
󰁜

c∈µ

(qaµ(c) − tlµ(c)+1)(tlµ(c) − qaµ(c)+1). (8)

We will make extensive use of plethystic notation (cf. [19, Chapter 1]).
We have for example the addition formulas

en[X + Y ] =

n󰁛

i=0

en−i[X]ei[Y ] and hn[X + Y ] =

n󰁛

i=0

hn−i[X]hi[Y ]. (9)

We will also use the symbol 󰂃 for

f [󰂃X] = (−1)kf [X] for f [X] ∈ Λ(k), (10)

so that, in general,

f [−󰂃X] = ωf [X] (11)

for any symmetric function f , where ω is the fundamental algebraic involution which sends ek to hk, sλ to sλ′

and pk to (−1)k−1pk.
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Recall the Cauchy identities

hn[XY ] =
󰁛

λ⊢n

sλ[X]sλ[Y ] and hn[XY ] =
󰁛

λ⊢n

hλ[X]mλ[Y ]. (12)

We will also use the star scalar product on Λ, which can be defined for all f, g ∈ Λ as

〈f, g〉∗ := 〈ωφf, g〉 = 〈φωf, g〉, (13)

where
φf [X] := f [MX] for all f [X] ∈ Λ. (14)

It turns out that the Macdonald polynomials are orthogonal with respect to the star scalar product: more
precisely

〈 󰁨Hλ, 󰁨Hµ〉∗ = wµ(q, t)δλ,µ (15)

where δx,y is 1 if x = y and 0 otherwise.
We define the nabla operator on Λ by

∇ 󰁨Hµ := Tµ
󰁨Hµ for all µ, (16)

and we define the Delta operators ∆f and ∆′
f on Λ by

∆f
󰁨Hµ := f [Bµ(q, t)] 󰁨Hµ and ∆′

f
󰁨Hµ := f [Bµ(q, t)− 1] 󰁨Hµ, for all µ. (17)

Observe that on Λ(n) the operator ∇ equals ∆en . Moreover, for every 1 ≤ k ≤ n,

∆ek = ∆′
ek

+∆′
ek−1

on Λ(n), (18)

and for any k > n, ∆ek = ∆′
ek−1

= 0 on Λ(n), so that ∆en = ∆′
en−1

on Λ(n).

For a given k ≥ 1, we define the Pieri coefficients c
(k)
µν and d

(k)
µν by setting

h⊥
k
󰁨Hµ[X] =

󰁛

ν⊂kµ

c(k)µν
󰁨Hν [X], (19)

ek

󰀗
X

M

󰀘
󰁨Hν [X] =

󰁛

µ⊃kν

d(k)µν
󰁨Hµ[X], (20)

where ν ⊂k µ means that ν is contained in µ (as Ferrers diagrams) and µ/ν has k lattice cells, and the symbol
µ ⊃k ν is analogously defined. The following identity is well-known:

c(k)µν =
wµ

wν
d(k)µν . (21)

The following summation formula is also well-known (e.g. cf. [7, Equation 1.35]):

󰁛

ν⊂1µ

c(1)µν = Bµ, (22)

while the following one is proved right after Equation (5.4) in [7]: for α ⊢ n,

󰁛

ν⊂ℓα

c(ℓ)ανTν = en−ℓ[Bα]. (23)

We will also use the symmetric functions En,k, that were introduced in [9] by means of the following
expansion:

en

󰀗
X

1− z

1− q

󰀘
=

n󰁛

k=1

(z; q)k
(q; q)k

En,k, (24)
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where

(a; q)s := (1− a)(1− qa)(1− q2a) · · · (1− qs−1a) (25)

is the usual q-rising factorial.
Observe that

en =

n󰁛

k=1

En,k. (26)

Recall also the standard notation for q-analogues: for n, k ∈ N, we set

[0]q := 0, and [n]q :=
1− qn

1− q
= 1 + q + q2 + · · ·+ qn−1 for n ≥ 1, (27)

[0]q! := 1 and [n]q! := [n]q[n− 1]q · · · [2]q[1]q for n ≥ 1, (28)

and
󰀗
n

k

󰀘

q

:=
[n]q!

[k]q![n− k]q!
for n ≥ k ≥ 0, while

󰀗
n

k

󰀘

q

:= 0 for n < k. (29)

Recall also (cf. [29, Theorem 7.21.2]) that

hk[[n]q] =
(qn; q)k
(q; q)k

=

󰀗
n+ k − 1

k

󰀘

q

for n ≥ 1 and k ≥ 0, (30)

and

ek[[n]q] = q(
k
2)
󰀗
n

k

󰀘

q

for all n, k ≥ 0. (31)

Moreover (cf. [29, Corollary 7.21.3])

hk

󰀗
1

1− q

󰀘
=

1

(q; q)k
=

k󰁜

i=1

1

1− qi
for k ≥ 0. (32)

4.2 Some basic identities

First of all, we record the well-known

〈 󰁨Hµ, hn〉 = 1 for all µ ⊢ n, (33)

󰁨H(n)[X] = hn

󰀗
X

1− q

󰀘 n󰁜

i=1

(1− qi), (34)

and the obvious

T(n) = q(
n
2)

B(n) = [n]q

Π(n) =

n󰁜

i=1

(1− qi) (35)

w(n) =

n󰁜

i=1

(1− qi) ·
n−1󰁜

i=0

(qi − t).

The following identity is well-known: for any symmetric function f ∈ Λ(n),

〈∆edf, hn〉 = 〈f, edhn−d〉. (36)
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We will use the following form of Macdonald-Koornwinder reciprocity : for all partitions α and β

󰁨Hα[MBβ ]

Πα
=

󰁨Hβ [MBα]

Πβ
. (37)

The following identity is also known as the Cauchy identity :

en

󰀗
XY

M

󰀘
=

󰁛

µ⊢n

󰁨Hµ[X] 󰁨Hµ[Y ]

wµ
for all n. (38)

We need the following well-known proposition.

Proposition 4.1. For n ∈ N we have

en[X] = en

󰀗
XM

M

󰀘
=

󰁛

µ⊢n

MBµΠµ
󰁨Hµ[X]

wµ
. (39)

Moreover, for all k ∈ N with 0 ≤ k ≤ n, we have

hk

󰀗
X

M

󰀘
en−k

󰀗
X

M

󰀘
=

󰁛

µ⊢n

ek[Bµ] 󰁨Hµ[X]

wµ
, (40)

and

ω(pn[X]) = [n]q[n]t
󰁛

µ⊢n

MΠµ
󰁨Hµ[X]

wµ
. (41)

We will make use of the following easy proposition.

Proposition 4.2. We have

∇en󰀏󰀏
t=0

= 󰁨H(n)[X; q, 0] = 󰁨H(n)[X; q, t] = hn

󰀗
X

1− q

󰀘 n󰁜

i=1

(1− qi). (42)

Proof . The result easily follows from (34), the expansion (cf. (39))

∇en =
󰁛

µ⊢n

Tλ
MBµΠµ

󰁨Hµ[X]

wµ
, (43)

the obvious

Tλ(q, 0) = δλ,(n)T(n)(q, 0), (44)

and the identities (35).

The following identity is [3, Theorem 4]:

ω(pn) =

n󰁛

k=1

[n]q
[k]q

En,k. (45)
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4.3 The family F
(d,ℓ)
n,k;p

Set

F
(d,ℓ)
n,k;p := tn−k−ℓ〈∆hn−k−ℓ

∆eℓen+p−d

󰀗
X

1− qk

1− q

󰀘
, ephn−d〉. (46)

We already considered this family in [6, Section 3.3]. We are going to recall here some of the results from that
article.

The family of plethystic formulae F
(d,ℓ)
n,k;p satisfy the following recursion.

Theorem 4.3 (Corollary 3.5 in [6]). For k, ℓ, d, p ≥ 0, n ≥ k + ℓ and n+ p ≥ d, the F
(d,ℓ)
n,k;p satisfy the following

recursion: for n ≥ 1

F (d,ℓ)
n,n;p = δℓ,0q

(n−d
2 )

󰀗
n

n− d

󰀘󰀗
n+ p− 1

p

󰀘
(47)

and, for n ≥ 1 and 1 ≤ k < n,

F
(d,ℓ)
n,k;p =tn−k−ℓ

p󰁛

j=0

k󰁛

s=0

q(
s
2)
󰀗
k

s

󰀘

q

󰀗
k + j − 1

j

󰀘

q

(48)

× tp−j
n−k−ℓ󰁛

u=0

s+j󰁛

v=0

q(
v
2)
󰀗
s+ j

v

󰀘

q

󰀗
s+ j + u− 1

u

󰀘

q

F
(d−k+s,ℓ−v)
n−k,u+v;p−j ,

with initial conditions

F
(d,ℓ)
0,k;p = δk,0δp,0δd,0δℓ,0 and F

(d,ℓ)
n,0;p = δn,0δp,0δd,0δℓ,0. (49)

The F
(d,ℓ)
n,k;p can be rewritten in the following way.

Lemma 4.4 (Lemma 3.6 in [6]). For k, ℓ, d, p ≥ 0, n ≥ k + ℓ and n+ p ≥ d, we have

F
(d,ℓ)
n,k;p =

󰁛

γ⊢n+p−d

(Π−1∇En−ℓ,k[X])
󰀏󰀏
X=MBγ

Πγ

wγ
eℓ[Bγ ]ep[Bγ ], (50)

where Π is the invertible linear operator defined by

Π 󰁨Hµ[X] = Πµ
󰁨Hµ[X] for all µ. (51)

The interest in the F
(d,ℓ)
n,k;p lies in the following theorem.

Theorem 4.5 (Theorem 3.7 in [6]). For ℓ, d, p ≥ 0, n ≥ ℓ+ 1 and n ≥ d, we have

n−ℓ󰁛

k=1

F
(d,ℓ)
n,k;p = 〈∆hp∆

′
en−ℓ−1

en, en−dhd〉.

4.4 The family S
(d,ℓ)
n,k;p

Set

S
(d,ℓ)
n,k;p :=

[n]q
[k]q

F
(d,ℓ)
n,k;p. (52)

We have the following recursion for S
(d,ℓ)
n,k;p.
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Theorem 4.6. For k, ℓ, d, p ≥ 0, n ≥ k + ℓ and n ≥ d, the S
(d,ℓ)
n,k;p satisfy the following recursion: for n ≥ 1

S(d,ℓ)
n,n;p = δℓ,0q

(n−d
2 )

󰀗
n

n− d

󰀘󰀗
n+ p− 1

p

󰀘
(53)

and, for n ≥ 1 and 1 ≤ k < n,

S
(d,ℓ)
n,k;p = F

(d,ℓ)
n,k;p + qktn−ℓ−k

p󰁛

j=0

k󰁛

s=0

q(
s
2)
󰀗
s+ j

s

󰀘

q

󰀗
k + j − 1

s+ j − 1

󰀘

q

×

× tp−j
n−ℓ−k󰁛

u=0

s+j󰁛

v=0

q(
v
2)
󰀗
u+ v

v

󰀘

q

󰀗
s+ j + u− 1

s+ j − v

󰀘

q

S
(d−k+s,ℓ−v)
n−k,u+v;p−j ,

with initial conditions

S
(d,ℓ)
0,k;p = δk,0δp,0δd,0δℓ,0 and S

(d,ℓ)
n,0;p = δn,0δp,0δd,0δℓ,0. (54)

Proof . The first identity follows immediately from the corresponding one in Theorem 4.3.

For the second one, using the obvious

[n]q
[k]q

=
[k]q + qk[n− k]q

[k]q
= 1 + qk

[n− k]q
[k]q

, (55)

and the recursion Theorem 4.3, we get

S
(d,ℓ)
n,k;p =

[n]q
[k]q

F
(d,ℓ)
n,k;p

= F
(d,ℓ)
n,k;p + qk

[n− k]q
[k]q

F
(d,ℓ)
n,k;p

= F
(d,ℓ)
n,k;p + qk

[n− k]q
[k]q

tn−k−ℓ

p󰁛

j=0

k󰁛

s=0

q(
s
2)
󰀗
k

s

󰀘

q

󰀗
k + j − 1

j

󰀘

q

× tp−j
n−k−ℓ󰁛

u=0

s+j󰁛

v=0

q(
v
2)
󰀗
s+ j

v

󰀘

q

󰀗
s+ j + u− 1

u

󰀘

q

F
(d−k+s,ℓ−v)
n−k,u+v;p−j

= F
(d,ℓ)
n,k;p + qktn−k−ℓ

p󰁛

j=0

k󰁛

s=0

q(
s
2)
󰀗
s+ j

j

󰀘

q

󰀗
k + j − 1

s+ j − 1

󰀘

q

× tp−j
n−k−ℓ󰁛

u=0

s+j󰁛

v=0

q(
v
2)
󰀗
u+ v

v

󰀘

q

󰀗
s+ j + u− 1

s+ j − v

󰀘

q

S
(d−k+s,ℓ−v)
n−k,u+v;p−j ,

where in the last equality we just rearranged suitably the q-binomials. The initial conditions are easy to check.

The interest in the S
(d,ℓ)
n,k;p lies in the following theorem.

Theorem 4.7. For ℓ, d, p ≥ 0, n ≥ ℓ+ 1 and n ≥ d, we have

n−ℓ󰁛

k=1

S
(d,ℓ)
n,k;p =

[n− ℓ]t
[n]t

〈∆hp
∆en−ℓ

ω(pn), en−dhd〉. (56)
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Proof . We have

n−ℓ󰁛

k=1

S
(d,ℓ)
n,k;p =

n−ℓ󰁛

k=1

[n]q
[k]q

F
(d,ℓ)
n,k;p

(using (50)) =

n−ℓ󰁛

k=1

[n]q
[k]q

󰁛

γ⊢n+p−d

Πγ

wγ
(Π−1∇En−ℓ,k)

󰀏󰀏
X=MBγ

eℓ[Bγ ]ep[Bγ ]

(using (45)) =
[n]q

[n− ℓ]q

󰁛

γ⊢n+p−d

Πγ

wγ
(Π−1∇ω(pn−ℓ))

󰀏󰀏
X=MBγ

eℓ[Bγ ]ep[Bγ ]

(using (41)) = [n]q[n− ℓ]t
󰁛

γ⊢n+p−d

󰁛

ν⊢n−ℓ

TνM
󰁨Hν [MBγ ]

wν

Πγ

wγ
eℓ[Bγ ]ep[Bγ ]

(using (20)) = [n]q[n− ℓ]t
󰁛

γ⊢n+p−d

󰁛

ν⊢n−ℓ

TνM
󰁛

α⊃ℓν

d(ℓ)αν

󰁨Hα[MBγ ]

wν

Πγ

wγ
ep[Bγ ]

(using (37)) = [n]q[n− ℓ]t
󰁛

α⊢n

M
Πα

wα

󰁛

γ⊢n+p−d

ep[Bγ ]
󰁨Hγ [MBα]

wγ

󰁛

ν⊂ℓα

c(ℓ)ανTν

(using (40)) = [n]q[n− ℓ]t
󰁛

α⊢n

M
Πα

wα
hp[Bα]en−d[Bα]

󰁛

ν⊂ℓα

c(ℓ)ανTν

(using (23)) = [n]q[n− ℓ]t
󰁛

α⊢n

M
Πα

wα
hp[Bα]en−d[Bα]en−ℓ[Bα]

(using (33)) = [n]q[n− ℓ]t
󰁛

α⊢n

M
Πα

wα
hp[Bα]en−ℓ[Bα]〈 󰁨Hα, hn〉

(using (41)) =
[n− ℓ]t
[n]t

〈∆en−d
∆hp

∆en−ℓ
ω(pn), hn〉

(using (36)) =
[n− ℓ]t
[n]t

〈∆hp∆en−ℓ
ω(pn), en−dhd〉.

4.5 An interesting identity

We start by proving the following theorem of symmetric functions.

Theorem 4.8. Given n ∈ N, n ≥ 1 and λ ⊢ n

n−1󰁛

s=0

(−t)s∆′
en−s−1

sλ =

󰀫
∇en󰀏󰀏

t=0

· (−t)k−1 for λ = (k, 1n−k)

0 otherwise
. (57)

In order to prove Theorem 4.8, we need the following lemma.

Lemma 4.9. Given n ∈ N, n ≥ 1 and µ ⊢ n

n󰁛

s=0

(−t)sen−s[Bµ] =

󰀝 󰁔n−1
i=0 (q

i − t) if µ = (n)
0 otherwise

. (58)

Proof . Observe that
n󰁛

s=0

(−t)sen−s[Bµ] =

n󰁛

s=0

(−1)shs[t]en−s[Bµ]

(using (11)) =

n󰁛

s=0

es[−t]en−s[Bµ]

(using (9)) = en[Bµ − t] .
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Now if (0, 1) ∈ µ, then Bµ − t has n− 1 positive monomial, so that en[Bµ − t] = 0. The only shape for which
(0, 1) /∈ µ is µ = (n), for which

n󰁛

s=0

(−t)sen−s[B(n)] =

n󰁛

s=0

(−t)sen−s[[n]q] =

n−1󰁜

i=0

(qi − t), (59)

where we used (34).

We are now ready to prove Theorem 4.8.

Proof of Theorem 4.8. First of all, using (18), it is easy to see that

n󰁛

s=0

(−t)s∆en−s
sλ = (1− t)

n−1󰁛

s=0

(−t)s∆′
en−s−1

sλ. (60)

Now, using (15), we have

n󰁛

s=0

(−t)s∆en−ssλ =

n󰁛

s=0

(−t)s∆en−s

󰁛

µ⊢n

〈sλ, 󰁨Hµ[X]〉∗
󰁨Hµ[X]

wµ

=
󰁛

µ⊢n

〈sλ, 󰁨Hµ[X]〉∗
n󰁛

s=0

(−t)sen−s[Bµ]
󰁨Hµ[X]

wµ

(using (58)) = 〈sλ, 󰁨H(n)[X]〉∗ ·
n−1󰁜

i=0

(qi − t)
󰁨H(n)[X]

w(n)

(using (34) and (35)) = 〈sλ, hn

󰀗
X

1− q

󰀘 n󰁜

i=1

(1− qi)〉∗ · hn

󰀗
X

1− q

󰀘

(using (12)) = 〈sλ,
󰁛

µ⊢n

sµ[1− t]sµ

󰀗
X

M

󰀘
〉∗ · hn

󰀗
X

1− q

󰀘 n󰁜

i=1

(1− qi)

(using (13)) =
󰁛

µ⊢n

〈sλ′ , sµ〉sµ[1− t]hn

󰀗
X

1− q

󰀘 n󰁜

i=1

(1− qi)

(using (34)) = sλ′ [1− t] 󰁨H(n)[X; q, 0]

(using (42)) = sλ′ [1− t]∇en󰀏󰀏
t=0

.

Now we need the following well-known identity (see [11, Lemma 2.1]): for all µ ⊢ n

sµ[1− u] =

󰀝
(−u)r(1− u) if µ = (n− r, 1r) for some r ∈ {0, 1, 2, . . . , n− 1},
0 otherwise.

(61)

Applying this one, we get

(1− t)

n−1󰁛

s=0

(−t)s∆′
en−s−1

sλ =

n󰁛

s=0

(−t)s∆en−s
sλ

= sλ′ [1− t]∇en󰀏󰀏
t=0

=

󰀫
(−t)k−1(1− t) ∇en󰀏󰀏

t=0

if λ = (k, 1n−k)

0 otherwise
,

which is what we wanted to prove.

4.6 Some consequences

We deduce some consequences of Theorem (4.8).

Corollary 4.10. Given m,n ∈ N, m ≥ 0, n ≥ 1 and λ ⊢ n

n−1󰁛

s=0

(−t)s∆hm∆′
en−s−1

sλ =

󰀫 󰀅
m+n−1

m

󰀆
q
∇en󰀏󰀏

t=0

· (−t)k−1 for λ = (k, 1n−k)

0 otherwise
. (62)
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Proof . The result follows easily by applying the operator ∆hm to (57), and using (42) and (30).

The following two theorems have a nice combinatorial interpretation in terms of the Delta conjectures, that
we are going to explain in Section 8.

Specializing (62) to λ = (1n), we get the following theorem.

Theorem 4.11. Given m,n ∈ N, m ≥ 0 and n ≥ 1, we have

n−1󰁛

s=0

(−t)s∆hm∆′
en−s−1

en =

󰀗
m+ n− 1

m

󰀘

q

∇en󰀏󰀏
t=0

. (63)

The following theorem is also an easy consequence of (62).

Theorem 4.12. Given m,n ∈ N, m ≥ 0 and n ≥ 1, we have

n−1󰁛

s=0

(−t)s
[n− s]t
[n]t

∆hm∆en−sω(pn) =

󰀗
m+ n− 1

m

󰀘

q

∇en󰀏󰀏
t=0

. (64)

Proof . Observe that
n󰁛

s=0

(−1)s∆en−sf = 0 for any f ∈ Λ(n) (65)

since
n󰁛

s=0

(−1)s∆en−s
f =

n󰁛

s=0

(−1)s∆en−s

󰁛

µ⊢n

〈f, 󰁨Hµ〉∗
󰁨Hµ

wµ

=
󰁛

µ⊢n

〈f, 󰁨Hµ〉∗
n󰁛

s=0

(−1)sen−s[Bµ]
󰁨Hµ

wµ

=
󰁛

µ⊢n

〈f, 󰁨Hµ〉∗en[Bµ − 1]
󰁨Hµ

wµ

= 0.

So, multiplying the left hand side of (64) by (1− tn), we get

(1− tn)

n−1󰁛

s=0

(−t)s
[n− s]t
[n]t

∆hm∆en−sω(pn) =

n󰁛

s=0

(−t)s(1− tn−s)∆hm∆en−sω(pn)

=

n󰁛

s=0

(−t)s∆hm
∆en−s

ω(pn)

+ (−tn)

n󰁛

s=0

(−1)s∆hm∆en−sω(pn)

(using (65)) =

n󰁛

s=0

(−t)s∆hm
∆en−s

ω(pn)

(using (18)) = (1− t)

n−1󰁛

s=0

(−t)s∆hm
∆′

en−s−1
ω(pn)

= (1− t)

n−1󰁛

s=0

(−t)s∆hm∆′
en−s−1

(−1)n−1
n−1󰁛

r=0

(−1)rs(n−r,1r)

(using (62)) = (−1)n−1(1− t)

n−1󰁛

r=0

(−1)r
󰀗
m+ n− 1

m

󰀘

q

∇en󰀏󰀏
t=0

· (−t)n−r−1

= (1− tn)

󰀗
m+ n− 1

m

󰀘

q

∇en󰀏󰀏
t=0

,

where in the fifth equality we used the Murnaghan-Nakayama rule.
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5 The Delta square conjecture at q = 0

In this section we prove the Delta square conjecture (i.e. m = 0) at q = 0.

Theorem 5.1. For n, k ∈ N, n > k ≥ 0,

[n− k]t
[n]t

∆en−k
ω(pn)

󰀏󰀏
q=0

= PLSQE
x,0,t(0, n)

∗k. (66)

Proof . Looking at the combinatorial side, we observe that setting q = 0 leaves out only labelled square paths
with dinv 0: because of the bonus dinv, this means that we are left with the partially labelled Dyck paths of
dinv 0, i.e.

PLSQE
x,0,t(0, n)

∗k = PLDx,0,t(0, n)
∗k. (67)

But the Delta conjecture at q = 0 has been proved in [8], so we already know that

∆′
en−k−1

en

󰀏󰀏󰀏
q=0

= PLDx,0,t(0, n)
∗k. (68)

Remark 5.2. We will give a new proof of (68) in the Appendix. Unlike the proof in [8] (or even the alternative
proof appearing in [18]), where, using the symmetry in q and t, they work combinatorially with PLDx,q,0(0, n)

∗k,
in our new proof we will work directly with PLDx,0,t(0, n)

∗k. Morever, the symmetric function side of the proof
is completely new.

Therefore, in order to prove our theorem, it is enough to show that

∆′
en−k−1

en

󰀏󰀏󰀏
q=0

=
[n− k]t
[n]t

∆en−k
ω(pn)

󰀏󰀏
q=0

. (69)

But observe that for any partition µ ⊢ n

Bµ|q=0 = [ℓ(µ)]t, (70)

and using this and (31) we have also

en−k−1[Bµ − 1]|q=0 = t(
n−k

2 )
󰀗
ℓ(µ)− 1

n− k − 1

󰀘

t

, (71)

so that

en−k−1[Bµ − 1] ·Bµ|q=0 = t(
n−k

2 )
󰀗
ℓ(µ)− 1

n− k − 1

󰀘

t

[ℓ(µ)]t

= t(
n−k

2 )
󰀗
ℓ(µ)

n− k

󰀘

t

[n− k]t

(using again (70) and (31)) = [n− k]t en−k[Bµ]|q=0 .

So, using (39) and (41), we get

∆′
en−k−1

en

󰀏󰀏󰀏
q=0

=
󰁛

µ⊢n

en−k−1[Bµ − 1]Bµ
MΠµ

󰁨Hµ[X]

wµ

󰀏󰀏󰀏󰀏󰀏
q=0

= [n− k]t
󰁛

µ⊢n

en−k[Bµ]
MΠµ

󰁨Hµ[X]

wµ

󰀏󰀏󰀏󰀏󰀏
q=0

=
[n− k]t
[n]t

∆en−k
ω(pn)

󰀏󰀏
q=0

,

as we wanted.
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6 The generalized Delta conjecture at k = 0 and t = 0

In this section we prove the generalized Delta conjecture at k = 0 and t = 0.

Proposition 6.1. For m,n ∈ N, m ≥ 0 and n ≥ 1,

∆hm∆′
en−1

en
󰀏󰀏
t=0

= ∆hm∇en|t=0 = PLDx,q,0(m,n)∗0. (72)

Proof . Using (42), we have

∆hm
∇en󰀏󰀏

t=0

= hm[[n]q] 󰁨H(n)[X; q, 0]

(using (30)) =

󰀗
n+m− 1

m

󰀘

q

hn

󰀗
X

1− q

󰀘 n󰁜

i=1

(1− qi)

(using (12)) =

󰀗
n+m− 1

m

󰀘

q

󰁛

λ⊢n

n󰁜

i=1

(1− qi)hλ

󰀗
1

1− q

󰀘
mλ [X]

(using (32)) =

󰀗
n+m− 1

m

󰀘

q

󰁛

λ⊢n

󰀗
n

λ1, . . . ,λℓ(λ)

󰀘

q

mλ [X] .

It is a well-known theorem of MacMahon (cf. [22, Theorem 6.44]) that

󰁛

λ⊢n

󰀗
n

λ1, . . . ,λℓ(λ)

󰀘

q

mλ [X] =
󰁛

w∈Pn

qinv(w)xw (73)

where P := {1, 2, . . . }, inv(w) is the number of inversions of the word w ∈ Pn, and xw is defined as xw :=󰁔n
i=1 x

number of i in w
i . Now at t = 0, i.e. with area 0, a labelled Dyck path of size n reduces to a word in Pn (read

top to bottom along the base diagonal), and its dinv is precisely the number of inversions of this word, so

󰁛

w∈Pn

qinv(w)xw = PLDx,q,0(0, n)
∗0. (74)

Now for each element of PDL(0, n)∗0 we can insert m zero valleys in all possible ways, except in the lowest row,
to get an element in PDL(m,n)∗0, and all the elements in PDL(m,n)∗0 are obtained in this way. Taking into
account the contribution of the zero valleys to the dinv explains the factor

󰀅
n+m−1

m

󰀆
q
, so that

󰀗
n+m− 1

m

󰀘

q

󰁛

w∈Pn

qinv(w)xw =

󰀗
n+m− 1

m

󰀘

q

PLDx,q,0(0, n)
∗0 = PLDx,q,0(m,n)∗0, (75)

completing the proof.

7 The Schröder case

The following definitions extend the ones in [6, Section 4] from Dyck paths to square paths (ending east).

Definition 7.1. We define the set of valleys of a square path P ∈ SQE(n).

• If P starts with a north step

Val(P ) := {2 ≤ i ≤ n | ai(P ) ≤ ai−1(P )},

• If P starts with an east step

Val(P ) := {1} ∪ {2 ≤ i ≤ n | ai(P ) ≤ ai−1(P )}.

These are exactly the indices of vertical steps that are directly preceded by a horizontal step.



The Delta square conjecture 17

Definition 7.2. The peaks of a square path P ∈ SQE(n) are

Peak(P ) := {1 ≤ i ≤ n− 1 | ai+1(P ) ≤ ai(P )} ∪ {n},

or the indices of vertical steps that are followed by a horizontal step.

Definition 7.3. Fix p, n, ℓ, d ∈ N, n ≥ 1. For every square path P ∈ SQE(n+ p) with |Rise(P )| ≥ ℓ, |Peak(P )| ≥
d and |Val(P )| ≥ p choose three subsets of {1, . . . , n+ p}:

(i) DRise(P ) ⊆ Rise(P ) (see Definition 2.4) such that |DRise(P )| = ℓ and decorate the corresponding vertical
steps with a ∗.

(ii) DPeak(P ) ⊆ Peak(P ) such that |DPeak(P )| = d and decorate with a • the points joining these vertical
steps with the horizontal steps following them. We will call these decorated peaks.

(iii) ZVal(P ) ⊆ Val(P ) such that |ZVal| = p and DPeak(P ) ∩ ZVal(P ) = ∅. Furthermore, if

S := {1 ≤ i ≤ n+ p | ai(P ) = −s},

where s is the shift of P ; then S ∕⊆ ZVal(P ). In other words, there exists at least one vertical step starting
from the base diagonal that is not in ZVal(P ). Label the corresponding vertical steps with a zero. These
steps will be called zero valleys.

We denote the set of these paths by SQE(p, n)∗ℓ,◦d. See Figure 3 for an example.

We define two statistics on SQE(p, n)∗ℓ,◦d.
The definition of the area of a path in SQE(p, n)∗ℓ,◦d is the same for a path in PLSQE(p, n)∗ℓ (see Definition

3.8).

Definition 7.4. For P ∈ SQE(p, n)∗ℓ,◦d, and 1 ≤ i < j ≤ n+ p, we say that the pair (i, j) is a diagonal inversion
if

• either ai(P ) = aj(P ), i ∕∈ DPeak(P ), and j ∕∈ ZVal(P ) (primary diagonal inversion),

• or ai(P ) = aj(P ) + 1, j ∕∈ DPeak(P ), and i ∕∈ ZVal(P ) (secondary diagonal inversion).

Then we define

dinv(P ) := #{0 ≤ i < j ≤ n+ p | (i, j) is a diagonal inversion}
+#{0 ≤ i ≤ n+ p | ai(D) < 0 and i ∕∈ ZVal(P )}.

This second term is referred to as bonus dinv.

∗

0

0

Fig. 3. Example of an element in SQE(2, 6)∗1,◦1

For example, the path in Figure 3 has dinv 7: 3 primary diagonal inversions, i.e. (1, 7), (1, 8) and (2, 3), 1
secondary diagonal inversion, i.e. (1, 6), and 3 bonus dinv, coming from the rows 3, 4 and 6.
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Remark 7.5. Let P ∈ PLSQE(p, n). We define its dinv reading word as the sequence of labels read starting from
the ones on the base diagonal y = x− s (so that s is the shift of P ) going bottom to top, left to right; next the
ones in the diagonal y = x− s+ 1 bottom to top, left to right; then the ones in the diagonal y = x− s+ 2 and
so on. For example the path in Figure 4 has dinv reading word 01203465. We warn the reader that this is the
reverse of the traditional definition.

One can consider the paths in SQE(p, n)∗ℓ,◦d as partially labelled decorated square paths where the reading
word is a shuffle of p 0’s, the string 1, · · · , n− d, and the string n, · · ·n− d+ 1. Indeed, given this restriction and
the information about the position of the zero labels and considering the d biggest labels to label the decorated
peaks, the rest of the labelling is fixed. With regard to this labelling the Definitions 7.4 and 3.9 of the dinv
coincide.

∗

4

0

1

2

0

3

6

5

Fig. 4. Partially labelled square path corresponding to the example in Figure 3 .

For example, the path in Figure 4 is the partially labelled square path corresponding to the decorated
square path in Figure 3. Indeed it has dinv reading word 01203465 which is a shuffle of two 0’s and the strings
{1, 2, 3, 4, 5}, {6}. Its dinv equals 7: 3 primary plus 1 secondary plus 3 bonus.

Define the subset

SQE(p, n\k)∗ℓ,◦d ⊆ SQE(p, n)∗ℓ,◦d (76)

to consist of the paths P ∈ SQE(p, n)∗ℓ,◦d such that

#{1 ≤ i ≤ n | ai(P ) is minimum and i ∕∈ ZVal(D)} = k,

and set

SQE
q,t(p, n\k)∗ℓ,◦d :=

󰁛

P∈SQE(p,n\k)∗ℓ,◦d
qdinv(P )tarea(P ). (77)

Following [6, Section 4], we denote by DD(p, n)∗ℓ,◦d the subset of SQE(p, n)∗ℓ,◦d consisting of the elements
whose underlying path is a Dyck path (i.e. the minimum of the area word is 0), and we set

DDd(p, n\k)∗ℓ,◦d := SQE(p, n\k)∗ℓ,◦d ∩ DD(p, n)∗ℓ,◦d, (78)

and

DDdq,t(p, n\k)∗ℓ,◦d :=
󰁛

D∈DDd(p,n\k)∗ℓ,◦d
qdinv(D)tarea(D). (79)

We recall here the main result from [6].

Theorem 7.6 (Theorem 4.7 in [6]). DDdq,t(p, n\k)∗ℓ,◦d = F
(d,ℓ)
n,k;p.

We are going to prove the analogue of the above theorem for square paths (ending east).

Theorem 7.7. SQE
q,t(p, n\k)∗ℓ,◦d = S

(d,ℓ)
n,k;p .
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Proof . We will show that SQE
q,t(p, n\k)∗ℓ,◦d satisfies the same recursion and initial conditions as S

(d,ℓ)
n,k;p in

Theorem 4.6.
In other words we will show that

SQE
q,t(p, n\k)∗ℓ,◦d = F

(d,ℓ)
n,k;p + qktn−k−ℓ

p󰁛

j=0

k󰁛

s=0

q(
s
2)
󰀗
s+ j

s

󰀘

q

󰀗
k + j − 1

s+ j − 1

󰀘

q

× tp−j
n−k−ℓ󰁛

u=0

s+j󰁛

v=0

q(
v
2)
󰀗
u+ v

v

󰀘

q

󰀗
s+ j + u− 1

s+ j − v

󰀘

q

SQE
q,t(p− j, n− k\u+ v)∗ℓ−v,◦d−(k−s)

with

SQE
q,t(p, n\n) = F (d,ℓ)

n,n;p = δℓ,0q
(n−d

2 )
󰀗

n

n− d

󰀘󰀗
n+ p− 1

p

󰀘
.

The last identity is straightforward: if all the letters of the area word that are not zero valleys are minima,
since the condition of ending east implies that one of them must be on the main diagonal (i.e. the corresponding
letter of the area word is 0), then all of them are on the main diagonal, hence the minimum of the area word is
0 and the path is actually a Dyck path. The identity then follows from Theorem 4.3. Note here that we use the
fact that 1 is not a valley if the path starts with a north step.

Now for the recursive step. We give an overview of the combinatorial interpretations of all the variables
appearing in this formula. We say that a vertical step of a path is at height i if its corresponding letter in the
area word equals m+ i, where m is the minimum of the area word (i.e. the steps on the base diagonal are at
height 0).

• k − s is the number of decorated peaks at height 0.

• s is the number of minima in the area word whose index is not a decorated peak nor a zero valley.

• j is the number of zero valleys at height 0.

• v is the number of decorated rises at height 1.

• u+ v is the number of m+ 1’s in the area word whose index is not a zero valley.

Start from a path P in SQE(p, n\k)∗ℓ,◦d. If it is a Dyck path, thanks to Theorem 7.6 it is counted by F
(d,ℓ)
n,k;p.

Otherwise, remove all the minima from the area word, and then remove both the corresponding decoration on
peaks, and decorations on rises at height one (which are not rises any more). In this way we obtain a path in

SQE(p− j, n− k\u+ v)∗ℓ−v,◦d−(k−s).

Notice that the steps we are deleting from the path in this way never lie on the line x = y because the path
is not a Dyck path. This implies that we do not need to make a distinction between paths starting north or east,
i.e. paths where 1 is a valley or not. Indeed all the vertical steps at height 0 are allowed to be zero valleys and
the zero valleys at height 1 do not create any secondary dinv with the deleted letters since they are zero valleys.

Let us look at what happens to the statistics of the path.
The area goes down by the size (n+ p), minus the number of zeroes in the area word (k + j) and the

number of rises (ℓ). This explains the term tn−k−ℓ · tp−j .
The factor qk takes into account the bonus dinv of the minima of the area word that are not zero valleys

(this is the definition of k). The factor q(
s
2) takes into account the primary dinv among the minima that are

neither zero valleys nor decorated peaks. The factor
󰀅
s+j
s

󰀆
q
takes into account the primary dinv between the

minima that are neither zero valleys nor decorated peaks, and the minima that are zero valleys. Indeed, each
time one of the former follows one of the latter one unit of primary dinv is created. The factor

󰀅
k+j−1
s+j−1

󰀆
q
takes

into account the primary dinv between the minima that are decorated peaks (of which there are k − s) and the
other minima (of which there are s+ j), where we get s+ j − 1 because the last minimum cannot be a peak
(and since it is not a peak, in particular it cannot be a decorated peak).

The factor q(
v
2) takes into account the secondary dinv between steps at height 1 that are decorated rises and

steps at height 0 that are directly below a decorated rise. The factor
󰀅
u+v
v

󰀆
q
takes into account the secondary

dinv between labels at height 1 that are neither decorated rises nor zero valleys, and labels below a decorated
rise. The factor

󰀅
s+j+u−1
s+j−v

󰀆
q
takes into account the secondary between all the labels at height 1 that are not

zero valleys (of which there are u+ v), and the labels at height 0 that are neither decorated peaks nor below
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a decorated rise (of which there are s+ j − v), where we get u+ v − 1 because the last rise comes after all the
minima (because the last letter of the area word is non-negative).

Summing over all the possible values of j, s, u, and v, we obtain the stated recursion. The initial conditions
are easy to check.

Since at least one of the steps at height 0 is not a zero valley (see Definition 7.3), k has to be at least 1 and
we get

n−ℓ󰁛

k=1

SQE
q,t(p, n\k)∗ℓ,◦d = SQE

q,t(p, n)
∗ℓ,◦d. (80)

Combining this with Theorem 4.7 we deduce the Schröder case of our generalized Delta square conjecture.

Theorem 7.8. For n, ℓ, d, p ∈ N, p ≥ 0, n > ℓ ≥ 0 and n ≥ d ≥ 0,

[n− ℓ]t
[n]t

〈∆hp∆en−ℓ
ω(pn), en−dhd〉 = SQE

q,t(p, n)
∗ℓ,◦d. (81)

Notice that the q, t-square theorem of Can and Loehr [3] is the special case p = ℓ = d = 0 of our theorem.

8 An involution

Fix m,n ∈ N, m ≥ 0 and n > 0. Let

X :=

n−1󰁊

k=0

PLSQE(m,n)∗k, (82)

and define a map ϕ : X → X in the following way: if P ∈ X has no rises, i.e. no two consecutive vertical steps,
then ϕ(P ) := P ; otherwise, consider the first rise encountered by following the path P starting from its breaking
point (notice that this rise will always occur before the north-east corner): if the rise is decorated/undecorated,
then ϕ(P ) is the path obtained from P by undecorating/decorating that rise. Observe that ϕ is clearly an
involution, whose fixed points are the paths P ∈ X with no rises, i.e. the paths of area 0 with no decorated rises.
Notice also that ϕ restricts to an involution of

Y :=

n−1󰁊

k=0

PLD(m,n)∗k ⊆ X. (83)

For any P ∈ X we define a weight by setting

wt(P ) := (−t)dr(P )qdinv(P )tarea(P )xP (84)

where dr(P ) is defined to be the number of decorated rises of P .
Observe that

󰁛

P∈X

wt(P ) =

n−1󰁛

s=0

(−t)sPLSQE
x,q,t(m,n)∗s (85)

and
󰁛

P∈Y

wt(P ) =

n−1󰁛

s=0

(−t)sPLDx,q,t(m,n)∗s. (86)

Suppose that P ∈ X is such that ϕ(P ) ∕= P . Notice that the rise occurring in the definition of ϕ is always
at distance 1 from the base diagonal, so undecorating/decorating it when it is decorated/undecorated gives
dr(ϕ(P )) = dr(P )∓ 1, but area(ϕ(P )) = area(P )± 1. Since the decorations of the rises do not affect the dinv,
we deduce that wt(ϕ(P )) = −wt(P ). This shows that in the sum

󰁓
P∈X wt(P ) all the contributions of the P

that are not fixed by ϕ cancel out, leaving the sum over the fixed points of ϕ, i.e. over the paths with no rises.
The same argument applies to the sum

󰁓
P∈Y wt(P ).

This discussion proves the following theorem, which is the combinatorial counterpart of Theorem 4.11 and
Theorem 4.12 under the Delta conjectures.
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Theorem 8.1. Given m,n ∈ N, m ≥ 0 and n ≥ 1, we have

n−1󰁛

s=0

(−t)sPLSQE
x,q,t(m,n)∗s = PLDx,q,0(m,n)∗0 (87)

and
n−1󰁛

s=0

(−t)sPLDx,q,t(m,n)∗s = PLDx,q,0(m,n)∗0. (88)

Combining this theorem with Theorem 4.11 and Theorem 4.12, and with Proposition 6.1, we get immediately
the following curious corollary.

Corollary 8.2. For fixed m,n ∈ N, with m ≥ 0 and n > 0, the truth of the generalized Delta (square)
conjectures for all values of k in {0, 1, . . . , n− 1} except one imply the truth of the missing case.

9 Open problems

We already mentioned that Sergel [28] proved the square conjecture (i.e. the case m = k = 0 of our generalized
Delta conjecture) using the results of Carlsson and Mellit [4]. More specifically, Carlsson and Mellit proved
the compositional shuffle conjecture [16], which is a refinement of the shuffle conjecture in which the points
where the paths touch the main diagonal can be prescribed. In her proof Sergel actually used this refinement.
Unfortunately an analogous refinement is unknown, even conjecturally, for the Delta conjecture. Without such
a “compositional Delta conjecture”, it seems hard to imitate Sergel’s approach.

In light of the strong connection with the Delta conjecture, it is natural to ask for an analogue of any
result or open problem about the Delta conjecture. We will not list all the possibilities here, but we refer to the
literature on the Delta conjecture (e.g. the articles mentioned in the present work) for taking further inspiration.

Here we limit ourselves to ask for example if it is possible to prove the case 〈·, hdhn−d〉 or the specialization
at q = 1 of the (generalized) Delta square conjecture.

We conclude with the following problem: in the present work we proved the case q = 0 of the Delta
square conjecture (which reduced to the same case of the Delta conjecture); but notice that in general
[n− k]t/[n]t∆en−k

ω(pn) is not symmetric in q and t, so, oddly enough, our work leaves open the case t = 0
of the Delta square conjecture.

Appendix: a new proof of the Delta at q = 0

In this section we sketch a new proof of the Delta conjecture at q = 0, i.e. of

∆′
en−k−1

en

󰀏󰀏󰀏
q=0

= PLDx,0,t(0, n)
∗k. (89)

Our proof is different from both the original proof in [8] and the alternative one given in [18], though the
general strategy is borrowed from the latter.

The strategy. On the combinatorial side, in [20, Lemma 3.7] the authors proved essentially the following
proposition, though using a different combinatorial interpretation.

Proposition 9.1. For n, k, j ∈ N, n > k ≥ 0, n ≥ j ≥ 1,

h⊥
j PLDx,0,t(0, n)

∗k =

j󰁛

r=0

t(
j−r
2 )

󰀗
n− k

r

󰀘

t

󰀗
n− k − r

j − r

󰀘

t

PLDx,0,t(0, n− j)∗k−j+r, (90)

where h⊥
j is the adjoint operator with respect to the Hall scalar product of the multiplication by hj .

In the next subsection we give a sketch of the proof using directly our definitions.
Observe now that the identity (89) would follow easily from (90) and the following proposition, that we are

going to prove later in this appendix.
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Proposition 9.2. For n, k, j ∈ N, n > k ≥ 0, n ≥ j ≥ 1,

h⊥
j ∆′

en−k−1
en

󰀏󰀏󰀏
q=0

=

j󰁛

r=0

t(
j−r
2 )

󰀗
n− k

r

󰀘

t

󰀗
n− k − r

j − r

󰀘

t

∆′
en−k−r−1

en−j

󰀏󰀏󰀏
q=0

. (91)

Remark 9.3. Notice that the relation (91) is equivalent to the one where we exchange q and t everywhere: this
is due to the well-known fact that the symmetric functions ∆′

en−k−1
en are symmetric in q and t for all n and

k.

Indeed, if two symmetric functions f, g ∈ Λ(n) with n > 0 are such that h⊥
j f = h⊥

j g for all j ≥ 1, then it is
not hard to see that we must have f = g (cf. [20, Lemma 3.6]). Therefore, by induction on n, from Proposition 9.1
and Proposition 9.2 we would deduce (89).

Remark 9.4. Observe that this is the same general strategy used in [18, Theorem 4.2] to give an alternative
proof of the Delta conjecture at q = 0, though the authors use a relation similar to but different from (91). In
any event, it should be noticed that our derivation of (91) will be completely different from what has been done
in [18] or in [8].

Remark 9.5. Notice that the same argument, together with Remark 9.3 and Remark 9.8, proves also the Delta
conjecture at t = 0.

So, in order to complete our proof of (89) we are going to prove Proposition 9.1 and Proposition 9.2: this
is the content of the next two subsections.

Proof of Proposition 9.1. We want to prove that for j ≥ 1

h⊥
j PLDx,0,t(0, n)

∗k =

j󰁛

r=0

t(
j−r
2 )

󰀗
n− k

r

󰀘

t

󰀗
n− k − r

j − r

󰀘

t

PLDx,0,t(0, n− j)∗k−j+r. (92)

First of all, notice that, from general facts about superization [19, Chapter 6], acting with h⊥
j on

PLDx,0,t(0, n)
∗k corresponds combinatorially to picking the elements D in PLD(0, n)∗k in which the j biggest

labels appear in decreasing order in the dinv reading word (see Remark 7.5 for the definition), and evaluating
at 1 the corresponding variables in xD (cf. the proof of [18, Lemma 3.1]).

Let D ∈ PLD(0, n)∗k (i.e. D is a partially labelled Dyck path of size n with no zero valleys, and k decorated
rises) with dinv 0, such that its dinv reading word is a shuffle of any permutation σ ∈ Sn−j and a decreasing
sequence n, . . . , n− j + 1. Let us call any label that is strictly greater than n− j a big car, and the others small
cars.

Notice that all the big cars are necessarily peaks, hence they must lie in different columns. Also notice that
the big cars are decreasing going bottom to top.

We need some definitions.

Definition 9.6. Given a D ∈ PLD(0, n)∗k with dinv 0, let a = a(D) = a1, . . . , an be its area word and
l = (l1, . . . , ln) be the sequence of its labels, where li lies in the i-th row. Observe that such an object is
characterized by the fact that the area word is weakly increasing, i.e. ai ≤ ai+1 for i = 1, 2, . . . , n− 1, and the
inequalities li > li+1 when ai = ai+1.

We say that an index 1 ≤ i ≤ n− 1 is contractible if ai−1 < ai = ai+1 and ℓi−1 < ℓi+1.

Notice that contractible indices always correspond to peaks, thus we will refer to them as contractible peaks.
We will now define a removing operation on the peaks of a labelled Dyck path with dinv 0 as follows.
First of all, we choose a peak. Then we move all the decorations on the rises that lie weakly below that

peak down by one rise: if the bottom-most rise is not decorated, the total number of decorated rises is preserved,
and we call this rise-preserving removal ; otherwise we remove that decoration, letting the total number of
decorated rises decrease by one, and we call this rise-killing removal. If the peak is contractible, we remove the
corresponding vertical step and the horizontal step immediately after it; otherwise, we remove the corresponding
vertical step and the last horizontal step of the path. It is easy to see that the result of this procedure is still a
labelled Dyck path with dinv 0. See Figure 5 and Figure 6 for examples of both rise-killing and rise-preserving
removals.

Remark 9.7. Notice that these two removal operations correspond, under the bijection defined in the proof of
[17, Proposition 4.1], to the inverse of the insertions defined for the maj statistic in [30, Section 4.2]. In any
event, it is easy to see that these moves are indeed invertible once the loss of area is known.
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Fig. 5. A parking function of size 8 with dinv 0 and 2 decorated rises. The peaks labelled 6 and 7 are
contractible. The peaks labelled 5 and 8 are not.
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Fig. 6. The recursive step applied to the parking function in Figure 5 for j = 2. It consists of a rise-killing
removal on the peak with label 7, followed by a rise-preserving removal on the peak with label 8.

We describe now the removal algorithm for the j big cars. We apply the removing operation on the j big
cars (which are all necessarily peaks) on the bottom-most contractible peak among them, if any, and we repeat
the procedure until there are no more contractible peaks. Then we apply the removing operation on the top-most
non-contractible peak among them, if any, and we repeat the procedure until there are no more big cars.

We claim that this algorithm is well defined, i.e. after we are done removing contractible peaks no big car
can possibly become a contractible peak. In fact, after we are done removing contractible peaks no two big cars
can be next to each other (otherwise the bottom-most one would be contractible), and the condition of being
contractible only depends on the adjacent labels. Also notice that removing a contractible peak i cannot create
any contractible peak in any of the first i− 1 rows.

We now want to compute the loss of the area given by our removal algorithm. We start by looking at what
happens with a single removal of a big car.

When we remove a contractible peak i, the area first increases by the number of decorated rises that lie in
the first i rows (because all of them are moving to a rise at height exactly one less, except the bottom-most one,
if decorated, which was at height one and disappears), then it decreases by ai (since it can’t be a decorated rise
any more). Notice that ai is equal to the number of rises in the first i rows. It follows that the net area loss is
given by the number of non-decorated rises in the first i rows.

When we remove a non-contractible peak i the area decreases by the same amount, plus the number of
non-decorated vertical steps in rows i+ 1 to n (since the corresponding letters of the area word are decreasing
by one).

Let r be the number of big cars that gets removed by our algorithm with a rise-preserving operation. We
want to prove that the area contributions of the j − r rise-killing removals form a strictly increasing sequence
of integers between 0 and n− k − r − 1, while the contributions of the r rise-preserving removals form a weakly
increasing sequence of integers between 0 and n− k − r.

If we remove a contractible peak i, the number of non-decorated rises in the first i rows can not possibly
decrease (after removing the peak, the i-th row will contain a non-decorated rise by definition of contractible),
and it increases by at least one if we perform a rise-killing removal (since the number of rises in the first i rows
is the same and the number of decorations is now one less). Furthermore we know that none of the first i− 1
rows will contain a contractible peak, hence the new bottom-most contractible peak will have an index greater
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than or equal to i, which means that its contribution to the area is at least the same as the one of the peak we
just removed, and it is in fact strictly greater if we performed a rise-killing removal.

Moreover, since we are removing non-contractible peaks top to bottom, the non-decorated vertical steps
above each of them are weakly increasing, and the non-decorated rises that contributed for any of them still
contribute (possibly as non-decorated steps strictly above instead of non-decorated rises weakly below), with
the only possible exception of the last deleted peak; however, since big cars lie in different columns, we always
have a valley (which is a non-decorated vertical step) between any two of them, and hence the contributions
are weakly increasing. The same argument applies when we switch from contractible peaks to non-contractible
ones. For the same reason as before, the contributions must strictly increase if we last performed a rise-killing
removal, since the number of decorations decreases.

The contribution of the last peak is at most the number of non-decorated vertical steps that are left
(including itself) minus one (the first step is never counted, since it is weakly below the peak and it is not a
rise), which is exactly n− k − r. If the last removal is rise-killing, however, it must be at least one unit smaller
(the bottom-most rise is decorated, thus it doesn’t contribute).

It is easy to check that all the sequences can be achieved in this way, as the process is reversible once the
losses of area are known (cf. Remark 9.7).

Strictly increasing sequences of length j − r of integers between 0 and n− k − r − 1 are q-counted by

q(
j−r
2 )󰀅n−k−r

j−r

󰀆
q
, while weakly increasing sequences of length r of integers between 0 and n− k − r are q-counted

by
󰀅
n−k
r

󰀆
q
.

This completes the proof of Proposition 9.1.

Remark 9.8. Notice that the relation (90) is true also when the roles of q and t are interchanged, i.e.

h⊥
j PLDx,q,0(0, n)

∗k =

j󰁛

r=0

q(
j−r
2 )

󰀗
n− k

r

󰀘

q

󰀗
n− k − r

j − r

󰀘

q

PLDx,q,0(0, n− j)∗k−j+r. (93)

The argument is in fact slightly easier in this case, so we limit ourself to indicate the roles of the terms in the
formula, leaving the details to the interested reader.

The elements of PLDx,q,0(0, n)
∗k, i.e. the labelled Dyck paths of area 0, are the ones for which the area

word is a sequence of strictly increasing sequences all starting from 0, and where all the rises are decorated,
so that n− k is the number of labels on the main diagonal. In the formula r is the number of big cars on
the diagonal,

󰀅
n−k
r

󰀆
q
counts the dinv between the big cars and the small cars that lie on the main diagonal,

q(
j−r
2 )󰀅n−k−r

j−r

󰀆
q
counts the dinv between the big cars and the small cars that are not on the diagonal, and

PLDx,q,0(0, n− j)∗k−j+r keeps track of the remaining dinv among the small cars and the variables x.

Proof of Proposition 9.2. We want to prove that for n > k ≥ 0, n ≥ j ≥ 1,

h⊥
j ∆′

en−k−1
en

󰀏󰀏󰀏
q=0

=

j󰁛

r=0

t(
j−r
2 )

󰀗
n− k

r

󰀘

t

󰀗
n− k − r

j − r

󰀘

t

∆′
en−k−r−1

en−j

󰀏󰀏󰀏
q=0

. (94)

We introduce some notation: given a partition µ, we set

n(µ) :=
󰁛

i

µi(i− 1) =
󰁛

c∈µ

lµ(c) =
󰁛

c∈µ

l′µ(c),

we call mi(µ) the number of parts of µ equal to i, and we set

g(µ) := −2n(µ)− n+
󰁛

i

󰀕
mi(µ) + 1

2

󰀖
. (95)

Observe that

Πµ|q=0 =
󰁜

c∈µ/(1)

(1− qa
′
µ(c)tl

′
µ(c))

󰀏󰀏󰀏󰀏󰀏󰀏
q=0

= (1− t)ℓ(µ)−1[ℓ(µ)− 1]t!, (96)
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and it is an exercise to show that

wµ|q=0 =
󰁜

c∈µ

(qaµ(c) − tlµ(c)+1)(tlµ(c) − qaµ(c)+1)

󰀏󰀏󰀏󰀏󰀏
q=0

(97)

= (−1)n−ℓ(µ)t−g(µ)
󰁜

c∈µ : aµ(c)=0

(1− tlµ(c)+1) (98)

= (−1)n−ℓ(µ)t−g(µ)(1− t)ℓ(µ)
󰁜

i

[mi(µ)]t! (99)

so that, setting 󰀗
ℓ(µ)

m(µ)

󰀘

t

:=

󰀗
ℓ(µ)

m1(µ),m2(µ), . . . ,mn(µ)

󰀘

t

and using also (70), we have
MΠµBµ

wµ

󰀏󰀏󰀏󰀏
q=0

= (−1)n−ℓ(µ)tg(µ)
󰀗
ℓ(µ)

m(µ)

󰀘

t

. (100)

Using the expansion (39), (71) and what we have just seen, it is now easy to see (compare [18, Equation 4.3])
that

∆′
en−k−1

en

󰀏󰀏󰀏
q=0

=
󰁛

µ⊢n

en−k−1[Bµ − 1]
MΠµBµ

󰁨Hµ[X; q, t]

wµ

󰀏󰀏󰀏󰀏󰀏
q=0

=
󰁛

µ⊢n

t(
n−k

2 )
󰀗
ℓ(µ)− 1

n− k − 1

󰀘

t

󰀗
ℓ(µ)

m(µ)

󰀘

t

󰁨Hµ[X; 0, t](−1)n−ℓ(µ)tg(µ). (101)

We need the following lemma, that we are going to prove at the end of this Appendix.
Recall the Pieri coefficients of (19) and (20).

Lemma 9.9. Given ν ⊢ n and j ≥ 1, we have

󰁛

µ⊃jν

en−k−1[Bµ − 1]BµΠµd
(j)
µν

󰀏󰀏󰀏󰀏󰀏󰀏
q=0

= Πν(0, t) · t(
n−k−j

2 )
󰀗
ℓ(ν) + j − 1

n− k − 1

󰀘

t

󰀗
n− k

j

󰀘

t

[ℓ(ν)]t. (102)

We now have

h⊥
j ∆′

en−k−1
en

󰀏󰀏󰀏
q=0

=
󰁛

µ⊢n

en−k−1[Bµ − 1]
MBµΠµ

wµ
h⊥
j

󰁨Hµ[X; q, t]
󰀏󰀏󰀏
q=0

(using (19)) =
󰁛

µ⊢n

en−k−1[Bµ − 1]MBµΠµ

󰁛

ν⊂jµ

c
(j)
µν

wµ

󰁨Hν [X; q, t]
󰀏󰀏󰀏
q=0

(using (21)) =
󰁛

ν⊢n−j

󰁨Hν [X; 0, t]

wν(0, t)
(1− t)

󰁛

µ⊃jν

en−k−1[Bµ − 1]BµΠµd
(j)
µν

󰀏󰀏󰀏
q=0

(using (102)) =
󰁛

ν⊢n−j

󰁨Hν [X; 0, t]

wν(0, t)
(1− t)Πν(0, t) · t(

n−k−j
2 )

󰀗
ℓ(ν) + j − 1

n− k − 1

󰀘

t

󰀗
n− k

j

󰀘

t

[ℓ(ν)]t

= t(
j
2)
󰀗
n− k

j

󰀘

t

󰁛

ν⊢n−j

t(
n−k

2 )−j(n−k−1)

󰀗
ℓ(ν) + j − 1

n− k − 1

󰀘

t

× (103)

×
󰀗
ℓ(ν)

m(ν)

󰀘

t

󰁨Hν [X; 0, t](−1)n−j−ℓ(ν)tg(ν),

where in the last equality we used

󰀕
n− k − j

2

󰀖
=

󰀕
n− k

2

󰀖
+

󰀕
j

2

󰀖
− j(n− k − 1). (104)
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Since the 󰁨Hν [X; 0, t] form a basis for the symmetric functions with coefficients in Q(t), for (94) to hold we

must have that the coefficient of 󰁨Hν [X; 0, t] in its left hand side, i.e. in (103), and the corresponding one in its
right hand side, i.e. replacing in it (101) with k replaced by k + r, must match. That is, we need to show that

t(
n−k

2 )−(n−k−1)j

󰀗
ℓ(ν) + j − 1

n− k − 1

󰀘

t

t(
j
2)
󰀗
n− k

j

󰀘

t

=

=

j󰁛

r=0

t(
j−r
2 )

󰀗
n− k

r

󰀘

t

󰀗
n− k − r

j − r

󰀘

t

t(
n−k−r

2 )
󰀗

ℓ(ν)− 1

n− k − r − 1

󰀘

t

.

But using the substitution r = n− k −m we have

j󰁛

r=0

t(
j−r
2 )

󰀗
n− k

r

󰀘

t

󰀗
n− k − r

j − r

󰀘

t

t(
n−k−r

2 )
󰀗

ℓ(ν)− 1

n− k − r − 1

󰀘

t

=

=

n−k󰁛

m=n−k−j

t(
j−n+k+m

2 )
󰀗

n− k

n− k −m

󰀘

t

󰀗
m

j − n+ k +m

󰀘

t

t(
m
2 )
󰀗
ℓ(ν)− 1

m− 1

󰀘

t

= t(
n−k

2 )−j(n−k−1)+(j2)
󰀗
n− k

j

󰀘

t

×

×
󰁛

m≥1

t(m−n+k+j)(m−1)

󰀗
j

n− k −m

󰀘

t

󰀗
ℓ(ν)− 1

m− 1

󰀘

t

where in the last equality we used an easy manipulation of t-binomials and

󰀕
j − n+ k +m

2

󰀖
+

󰀕
m

2

󰀖
=

󰀕
n− k

2

󰀖
− j(n− k − 1) +

󰀕
j

2

󰀖
+ (m− n+ k + j)(m− 1).

So we are left to show

󰀗
ℓ(ν) + j − 1

n− k − 1

󰀘

t

=
󰁛

m≥1

t(m−n+k+j)(m−1)

󰀗
j

n− k −m

󰀘

t

󰀗
ℓ(ν)− 1

m− 1

󰀘

t

, (105)

which is none other than the well-known q-Vandermonde (cf. [1, Equation (3.3.10)]).

To complete our proof of the Delta conjecture at q = 0 it remains only to prove Lemma 9.9.

Proof of Lemma 9.9. Given ν ⊢ n and j ≥ 1, we want to prove

󰁛

µ⊃jν

en−k−1[Bµ − 1]BµΠµd
(j)
µν

󰀏󰀏󰀏󰀏󰀏󰀏
q=0

= Πν(0, t)[ℓ(ν)]t · t(
n−k−j

2 )
󰀗
ℓ(ν) + j − 1

n− k − 1

󰀘

t

󰀗
n− k

j

󰀘

t

(106)

= Πν(0, t)[n− k]t · t(
n−k−j

2 )
󰀗
ℓ(ν) + j − 1

j

󰀘

t

󰀗
ℓ(ν)

n− k − j

󰀘

t

. (107)

We will need two more identities: [7, Lemma 5.2], i.e.

en−k−1[Bβ − 1]Bβ =
󰁛

γ⊂kβ

c
(k)
βγBγTγ for β ⊢ n > k ≥ 1, (108)

and [13, Theorem 2.6], i.e. for any A,F ∈ Λ homogeneous

󰁛

µ⊢n

ΠµF [MBµ]d
A
µν = Πν

󰀃
∆A[MX]F [X]

󰀄
[MBν ], (109)

where dAµν is the generalized Pieri coefficient defined by

󰁛

µ⊃ν

dAµν 󰁨Hµ = A 󰁨Hν . (110)
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Setting A[X] = ej [X/M ] and F [X] = en−k−1[X/M − 1]e1[X/M ] in (109), we get

󰁛

µ⊃jν

en−k−1[Bµ − 1]BµΠµd
(j)
µν = Πν

󰀃
∆ejen−k−1[X/M − 1]e1[X/M ]

󰀄
[MBν ]

(using (18)) = Πν

󰀣
n−k−1󰁛

i=0

∆ej (−1)n−k−1−iei[X/M ]e1[X/M ]

󰀤
[MBν ]

(using (40)) = Πν

󰀳

󰁃
n−k−1󰁛

i=0

∆ej (−1)n−k−1−i
󰁛

β⊢i

e1[X/M ]
󰁨Hβ [X]

wβ

󰀴

󰁄 [MBν ]

(using (20)) = Πν

󰀳

󰁃
n−k−1󰁛

i=0

∆ej (−1)n−k−1−i
󰁛

β⊢i

󰁛

γ⊃1β

d
(1)
γβ

wβ

󰁨Hγ [X]

󰀴

󰁄 [MBν ]

(using (21)) = Πν

󰀳

󰁃
n−k−1󰁛

i=0

(−1)n−k−1−i
󰁛

γ⊢i+1

󰁛

β⊂1γ

c
(1)
γβ

wγ
ej [Bγ ] 󰁨Hγ [X]

󰀴

󰁄 [MBν ]

(using (22)) = Πν

n−k−1󰁛

i=0

(−1)n−k−1−i
󰁛

γ⊢i+1

Bγej [Bγ ]
󰁨Hγ [MBν ]

wγ

(using (18)) = Πν

n−k−1󰁛

i=0

(−1)n−k−1−i
󰁛

γ⊢i+1

Bγej [Bγ − 1]
󰁨Hγ [MBν ]

wγ
(111)

+Πν

n−k−1󰁛

i=0

(−1)n−k−1−i
󰁛

γ⊢i+1

Bγej−1[Bγ − 1]
󰁨Hγ [MBν ]

wγ
.

Now, taking the first of the two summands in (111), we have:

Πν

n−k−1󰁛

i=0

(−1)n−k−1−i
󰁛

γ⊢i+1

Bγej [Bγ − 1]
󰁨Hγ [MBν ]

wγ
=

(using (108)) = Πν

n−k−1󰁛

i=0

(−1)n−k−1−i
󰁛

γ⊢i+1

󰁛

α⊂i−jγ

c(i−j)
γα BαTα

󰁨Hγ [MBν ]

wγ

(using (21)) = Πν

n−k−1󰁛

i=0

(−1)n−k−1−i
󰁛

α⊢j+1

BαTα

wα

󰁛

γ⊃i−jα

d(i−j)
γα

󰁨Hγ [MBν ]

(using (20)) = Πν

n−k−1󰁛

i=0

(−1)n−k−1−iei−j [Bν ]
󰁛

α⊢j+1

TαBα

󰁨Hα[MBν ]

wα

(using (18)) = Πνen−k−1−j [Bν − 1]
󰁛

α⊢j+1

TαBα

󰁨Hα[MBν ]

wα
.

When we specialize this at q = 0, because of the obvious

Tα(0, t) = δα,(1j+1)t
(j+1

2 ), (112)

the only term that survives in the sum is the one with α = (1j+1). Now using (34), the well-known

󰁨Hµ[X; q, t] = 󰁨Hµ′ [X; t, q], (113)
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and the obvious w(1j+1) =
󰁔j+1

i=1 (1− ti) ·
󰁔j

i=0(t
i − q), we get

Πνen−k−1−j [Bν − 1]
󰁛

α⊢j+1

TαBα

󰁨Hα[MBν ]

wα

󰀏󰀏󰀏󰀏󰀏
q=0

=

= Πν(0, t)en−k−1−j [[ℓ(ν)]t − 1]t(
j+1
2 ) [j + 1]t

w1j+1(0, t)
hj+1[[ℓ(ν)]t]

j+1󰁜

i=1

(1− ti)

= Πν(0, t)en−k−1−j [[ℓ(ν)]t − 1][j + 1]thj+1[[ℓ(ν)]t]

(using (71) and (30)) = Πν(0, t)t
(n−k−j

2 )
󰀗

ℓ(ν)− 1

n− k − 1− j

󰀘

t

[j + 1]t

󰀗
ℓ(ν) + j

j + 1

󰀘

t

.

Of course for the second summand in (111) we get the same result with j replaced by j − 1, so that

󰁛

µ⊃jν

en−k−1[Bµ − 1]BµΠµd
(j)
µν

󰀏󰀏󰀏
q=0

=

= Πν(0, t)t
(n−k−j

2 )
󰀗

ℓ(ν)− 1

n− k − 1− j

󰀘

t

[j + 1]t

󰀗
ℓ(ν) + j

j + 1

󰀘

t

+Πν(0, t)t
(n−k−j+1

2 )
󰀗
ℓ(ν)− 1

n− k − j

󰀘

t

[j]t

󰀗
ℓ(ν) + j − 1

j

󰀘

t

= Πν(0, t)t
(n−k−j

2 )
󰀗
ℓ(ν) + j − 1

j

󰀘

t

󰀕󰀗
ℓ(ν)− 1

n− k − 1− j

󰀘

t

[ℓ(ν) + j]t + tn−j−k

󰀗
ℓ(ν)− 1

n− k − j

󰀘

t

[j]t

󰀖

but

󰀗
ℓ(ν)− 1

n− k − 1− j

󰀘

t

[ℓ(ν) + j]t + tn−j−k

󰀗
ℓ(ν)− 1

n− k − j

󰀘

t

[j]t =

=

󰀗
ℓ(ν)− 1

n− k − 1− j

󰀘

t

[ℓ(ν) + j]t + [j]t

󰀕󰀗
ℓ(ν)

n− k − j

󰀘

t

−
󰀗

ℓ(ν)− 1

n− k − j − 1

󰀘

t

󰀖

=

󰀗
ℓ(ν)− 1

n− k − 1− j

󰀘

t

[ℓ(ν)]tt
j + [j]t

󰀗
ℓ(ν)

n− k − j

󰀘

t

=

󰀗
ℓ(ν)

n− k − j

󰀘

t

[n− k − j]tt
j + [j]t

󰀗
ℓ(ν)

n− k − j

󰀘

t

= [n− k]t

󰀗
ℓ(ν)

n− k − j

󰀘

t

,

where in the first equality we used the well-known qb
󰀅
a−1
b

󰀆
+
󰀅
a−1
b−1

󰀆
=

󰀅
a
b

󰀆
. Hence

󰁛

µ⊃jν

en−k−1[Bµ − 1]BµΠµd
(j)
µν

󰀏󰀏󰀏
q=0

= Πν(0, t)t
(n−k−j

2 )
󰀗
ℓ(ν) + j − 1

j

󰀘

t

󰀗
ℓ(ν)

n− k − j

󰀘

t

[n− k]t

= Πν(0, t)t
(n−k−j

2 )
󰀗
ℓ(ν) + j − 1

n− k − 1

󰀘

t

󰀗
n− k

j

󰀘

t

[ℓ(ν)]t,

where in the last equality we used an easy manipulation of t-binomials (cf [7, Lemma 4.3]).
This completes the proof of Lemma 9.9.
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